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Random tilings with quasicrystal order: transfer-matrix 
approach 
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Department of Physics, Cornell University, Ithaca, N Y  14853-2501, USA 

Received 15 July 1987 

Abstract. The random tiling of the plane by a set of objects (e.g., rhombi), related by 
rotational (e.g., tenfold) symmetries, is a paradigm for the formation of quasiperiodic order 
due to entropy. Such tilings are mapped to a higher-dimensional space where they form 
hypersurfaces analogous to the interfaces in a solid-on-solid model. I argue that the 
fluctuations of the hypersurface should be described by a gradient-squared free energy of 
entropic origin; this implies quasi-long-range order in d = 2. I show how the random tiling 
can be decomposed into layers, define a transfer matrix, and give prescriptions for using 
this method to determine numerically the stiffness of the gradient free energy. 

1. Introduction 

The distinguishing characteristic of experimental quasicrystals is that they have non- 
crystallographic fivefold symmetries but rather sharp diffraction peaks (Shechtman e? 
a1 1984). It was natural to model their structures by ideal deterministic quasicrystals. 
These are packings or tilings of identical rigid units, which are perfectly quasiperiodic, 
i.e. their diffraction patterns consist entirely of Bragg peaks of zero width (Levine and 
Steinhardt 1984, Elser 1985b, Katz and Duneau 1986). 

However, it is now generally accepted that all the real rapidly quenched alloys 
incorporate a large amount of structural disorder (Heiney et al 1987). The observed 
high resistivity and diffuse scattering might be explained by merely local (e.g., substitu- 
tional) disorder, but the observed broadening of the diffraction peaks indicates some 
kind of disorder in the long-range geometry. Furthermore, there are great difficulties 
even in formulating ideal model systems of interacting atoms with deterministic 
quasicrystal ground statesS. There is still controversy over the nature, and degree, of 
this disorder (Elser 1985a, b, 1987, 1988, Stephens and Goldman 1986, Lubensky et 
a1 1986, Horn et al 1986) and whether it is intrinsic to quasicrystal formation (Elser 
1985a, 1987, Stephens and Goldman 1986, Henley 1987). 

Random tilings are the simplest random quasicrystal models. In this paper, two 
ways of representing random tilings are used. One way, which has proved both physical 

t Present address: Department of Physics, Boston University, Boston, MA 02215, USA. 
rf Such structures have the disconcerting property that atoms must jump suddenly in response to small 
changes of their surroundings (Frenkel ef a /  1986). This suggests that metastability and disorder occur in 
practice. 
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and practical in other contexts, is to lift them into hypersurfaces in a space of D 
dimensions. Then, well understood concepts from interface theory can be carried over 
to model the statistical physics of this hypersurface. It turns out that the long-range 
correlations depend on the fluctuations of the hypersurface normal to the physical space. 

Elser ( 1987) has conjectured that a simple gradient-squared free energy (equation 
(2.12)) gives the statistical weight of these fluctuations. This gives a simple basically 
entropic mechanism whereby long-range quasicrystal order develops in d > 2 (Elser 
1985b, 1988). It is desirable to test the correctness of this picture and numerically 
calculate its parameters: the stiffness K of the gradient-squared free energy and the 
entropy So of the random tiling. These parameters are important for models of real 
systems, which are described by geometries similar to a random tiling. The stiffness 
K affects the diffraction pattern (Elser 1985b) and the residual entropy So affects the 
thermodynamic stability of the quasicrystal phase. 

The second way to represent the tilings is to decompose them into rows, where 
each row is a string of sites and each site has a finite set of states as in a spin model. 
This is the necessary basis of transfer-matrix schemes, which are the focus of this paper. 

1 . 1 .  Models of disorder in quasicrystals 

The structure of quasicrystals has most fruitfully been described by a ‘rigid geometry 
plus decoration’ approach. Such a structural model consists of (i) the geometry-rigid 
framework or network, built by repeated use of identical, and identically oriented, 
geometrical units-and (ii) the decoration-a rule for placing atoms on the rigid 
geometry. My only concern in this paper is the geometry, which is responsible for any 
possible long-range quasicrystal order. The most popular geometries are as follows. 

( i )  Networks of icosahedra, connected by bonds along symmetry directions 
(Shechtman et a1 1984, Stephens and Goldman 1986, Guyot and Audier 1985, Elser 
1988, Henley 1988). The two-dimensional analogues are networks of decagons (or 
pentagons). 

(ii) Tilings of rhombohedra (Elser and Henley 1985, Henley and Elser 1986) or 
other polyhedra (Henley 1988); the two-dimensional analogues being rhombi or other 
polygons, such as triangles and squares. 

I define ‘(translational) long-range order’ to mean ‘existence of Bragg scattering’. 
The Penrose tiling (de Bruijn 1981) and its generalisations to other symmetries (Socolar 
et a1 1985) are geometries analogous to perfect crystal lattices. Their Fourier transform 
consists of nothing but Bragg peaks-they have perfect, albeit non-periodic, long-range 
order-and they have no residual entropy: So = 0 (Gahler 1986). More realistic models 
must incorporate microscopic disorder, So> 0, but not every kind of disorder will 
destroy the long-range correlations. 

A possible picture of the quasicrystal state is that the geometry is such a perfect 
arrangement, but with defects called ‘phasons’ superimposed (Socolar et a1 1986). 
Most models, however, use geometries with built-in randomness, and are intended to 
show that disorder is somehow intrinsic to the formation of quasicrystals (Elser 1987, 
Stephens and Goldman 1986). One major category of random models is the growth 
models, in which icosahedra or decagons are aggregated in a non-equilibrium growth 
process which mimics the rapid quenching needed to produce most quasicrystals 
(Stephens and Goldman 1986, Elser 1987, 1988, Minchau et a1 1987). 

Another major category of random models is equilibrium models which possess a 
partition function, and thus have some hopes of analytic treatment. For example, 
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simulations have been performed of objects interacting in two dimensions: two- 
component systems of particles with radially symmetric interactions (Widom et a1 
1987, LanGon et a1 1986, Leung et a1 1988) and also decagon systems with angularly 
dependent interactions (Elser 1987). The potentials are chosen so that the ground 
state is a rigid geometry with a non-zero ground-state entropy So, implying disorder 
(Widom er a1 1987, Leung er a1 1988). 

The simplest models are tiling models. Like the Penrose tilings (and generalisations 
that have been devised), they consist of a few classes of identical tiles, packed 
edge-to-edge without gaps or overlaps, and with no other restrictions on which edges 
may adjoin. ( In  contrast, in ideal Penrose tilings (de  Bruijn 1981), rhombus edges are 
labelled with arrows to enforce ‘matching rules’ and this restriction suffices to reduce 
the entropy to zero.) The degrees of freedom are discrete but infinite in number. We 
could formulate a growth model with tiles rather than decagons (Elser 1985a). However, 
in this paper I will consider only equilibrium models of random tilings. They may be 
a Hamiltonian assigning different energies to different kinds of vertex, or, most simply, 
we can weight all distinct packings equally (‘equal-weighted ensemble’), an equilibrium 
model with an  entirely entropic ‘free energy.’ 

1.2. Previous estimates of parameters for two-dimensional geometries 

Several estimates have been made of the entropy So of random quasicrystal tilings and 
networks. Here I discuss the methods and compare the numerical values. Note that 
I define So as entropy per unit area; I will measure the area in units of A, which is 
defined as the average area per tile, in tilings which have a statistical p-fold symmetry 
in the orientations of different kinds of rhombi (i.e. zero phason strain, see Q 2.3). 
When the tiling in question actually has this symmetry, the entropy in these units is 
just the entropy per unit rhombus (note also the number of rhombi must equal the 
number of vertices). The most plausible values for the tenfold tiling are all consistent 
with So= 0.5A-I. 

( i )  For tilings made by a random growth process, one can record the number of 
choices available for each new site that is added. An average of the logarithm of this 
quantity gives a crude estimate of the entropy per site. For a tenfold random tiling 
(with the number rato of fat to thin tiles constrained to have the same number ratio 
T as occurs for tenfold symmetry), Chen and  Spaepen (1987) found So-0.495A--’. Of 
course, the entropy in the growth-process ensemble is not the same as that of the 
maximum-entropy ensemble. 

(ii) For a random tiling, one gets a simple estimate from counting the number of 
configurations available in a finite region. For example, in the 2~ tenfold rhombus 
tiling, a decagon can be packed in 62 possible ways with ten rhombi (these are shown 
in Frenkel et a1 (1986), figure 11). Here A = ( 5  + 2&)A = 9 .47q  giving So= ln(62)lA = 
0.436A-’. 

( i i i )  Chen and Spaepen (1988) have taken a kind of statistical mean-field approach 
to the entropy, in the spirit of Pauling’s approximate entropy for the ice model as used 
by Spaepen (1976). They consider the many different types of vertex possible in the 
tiling, and consider each vertex to be chosen at random where the corners of the two 
kinds of tiles are weighted with activities so as to ensure the overall number ratio of 
large rhombi to small rhombi is T =  (&+ 1)/2. They find So= 0.64 per rhombus. We 
would expect this to be an  overestimate, since the constraints between the local 
environments of neighbouring vertices are neglected. 
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(iv) The approach in this paper was inspired by the use of transfer matrices to 
generate random square-triangle tilings and evaluate their entropy So (Kawamura 
1983). 

Kawamura found a one-to-one mapping of triangle-square tilings to packings of 
triangles and 60” rhombi; this can be treated as a triangular lattice with rules for erasing 
some edges (more complicated than the analogous rules for the tiling in figure l (6 ) ) .  
Each vertex was considered as having one of eight different states, corresponding to 
its local environment in the tiling. A necessary and sufficient condition for a configur- 
ation to represent a square-triangle tiling is to satisfy a four-spin constraint around 
every rhombic plaquette generated by the two basis vectors. (The constraint is that 
the plaquette must be in one of 107 states, out of the 84 possible states.) These transfer 
matrices are very sparse and break up into disconnected blocks. The approach I 
consider in this paper describes the possible states more transparently. 

The triangle-square tilings have 12-fold symmetry and so, according to the argu- 
ments of 0 2 (below), they should be random quasicrystals. However, Kawamura 
considered these tilings as models of an amorphous state and did not investigate 
correlation functions which might have revealed translational order. 

(v) A Monte Carlo approach has been used by Orrick (1987). The method is as 
follows: for the case of a 2~ rhombus tiling (Elser 1985a) one can generate new tilings 
by a sequence of ‘reshuffling’ moves, each of which moves only one vertex and the 
neighbouring three rhombi?. It appears that this is ergodic, i.e. one can get from any 
tiling (of a finite region) to any other one by such moves. Thus, doing this flip on 
randomly chosen vertices gives a Monte Carlo dynamics which should generate the 
correct random-tiling ensemble, if we are in equilibrium. Let us impose a Hamiltonian 
for which the ground state is a perfect Penrose tiling, which has zero entropy; the 
infinite-temperature state is the equal-weighted random-tiling ensemble. Thus, the 
entropy of the latter state is the integral j: dT(  C( T ) /  T )  where C( T )  is the specific 
heat, measured through the Monte Carlo. Orrick (1987) used an artificial ‘potential’, 
V = flhi12, where hi is the perpendicular fluctuation mentioned above and discussed 
extensively in 0 2. 

For a random tiling with eightfold symmetry, Orrick (1987) finds an entropy of 
So-0.3943 per rhombus, using square systems of 41, 239 and 1393 rhombi (these 
choices minimised the phason strain by using rational approximants to 4). Note that 
the value for sixfold symmetry is 0.3383 per rhombus (see 0 3.2) so that, as we would 
expect, the entropy for p-fold symmetric tilings grows monotonically with p .  It is 
interesting to note that rapidly quenched VNiSi and CrNiSi alloys have been reported 
to be described by a random tiling with eightfold symmetry (Wang et a1 1987). 

Thus, many methods exist to estimate the entropy So. On the other hand, the only 
previously suggested approach for determining the stiffness K is the Monte Carlo 
method just described (Elser private communication). One need only measure (at 
T =  00) the equilibrium fluctuations ( l h L ( r )  - ht12), where h,l is the average through 
the sample, and this gives K by finite-size scaling (in the spirit of 0 5.2 below). Such 
an approach has one advantage over the transfer-matrix method proposed in this 

t This Monte Carlo procedure is far simpler than that for the simulations of interacting particles (Widom 
et a /  1987, Leung et a/ 1988) since (a )  the state space is discrete rather than continuous, and (b) for the 
simplest case, the Boltzmann weights are all equal. For the 3D rhombohedral tiling, there is an analogous 
move of one vertex corresponding to a repacking of four rhombohedra. However, such moves do not appear 
to exist for the 2D square-triangle tiling (Leung et a/ 1988) or the 3D icosahedrally symmetric ‘canonical 
cell’ tiling (Henley 1988). 
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paper: one can study (toy model) dynamics. At large length scales, the Monte Carlo 
dynamics should have diffuse phasons (Bak 1985, Lubensky et a1 1985, Socolar et a1 
1986), which do not seem to exist in non-random models (Frenkel et a1 1986). 

Unfortunately, the fluctuations of h' were not measured in the simulation of Orrick 
(1987). However, Elser (1987) did measure them in simulations of a growth model. 

1.3. Outline of the paper 

The purpose of this paper is to present a method to determine So and K numerically, 
in the two-dimensional case, by transfer matrices. In  the rest of the paper, I first ( 9  2 )  
introduce the D-dimensional formalism with the concepts of phason strain, the coarse- 
grained free energy and the correlation functions. Next (§ 3) I discuss (as a pedagogical 
example) a random tiling which has sixfold symmetry and thus is not a quasicrystal. 
First it is shown how this corresponds to an interface in a D = 3 cubic lattice. Then 
an efficient prescription is given for representing configurations of the tiling by dividing 
them into rows, and transition rules are given which define the transfer matrix. Section 
4, the core of the paper, repeats this work for the case of the randomised Penrose 
tiling with tenfold quasicrystal symmetry. Then § 5 develops the ideas introduced in 
§ 2 to work out the relation of the transfer matrices to the macroscopic free energy 
and correlation functions, so that the parameters of the free energy can be extracted 
from transfer-matrix iteration using finite-size scaling. Section 6 concludes with a 
discussion of possible elaborations, modifications or applications of this method. An 
appendix gives, as an example, calculations of the entropy for very small strips, of 
width up to four. 

2. Approaches to random quasicrystals 

2.1. D-dimensional representation 

It is elegant, convenient and useful to represent the rigid geometries discussed in P 1.1 
by embedding them in a periodic lattice in a higher dimension D. A given vertex of 
the geometry with coordinates r" in the d-dimensional 'physical' space can be written 

r'l = x,e*:,, ( 2 . 1 ~ )  

in terms of unit basis vectors e * , , ,  (with integer-valued [x,]). We define the d'- 
dimensional 'complementary' coordinate 

D 

a = l  

I 1  

D 

h'= x,et,,. (2 . lb )  
a = l  

The basis vectors are chosen so that in D-dimensional space, 

e (o l=  ( d " / D ) 1 / 2 e * ~ , , + e ~ a l  ( 2 . 2 )  
form an orthonormal sett. The specifics of this 'lifting' are left to §§ 3.1 and 4.1 which 
give detailed examples. 

t The choice to normalise physical and perpendicular space in different ways is the source of various factors 
of d " / D  in subsequent formulae. 
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I will use d "  as a synonym of d when I wish to emphasise the dual roles of physical 
and perpendicular space. For the sixfold tiling considered in 0 3, (d l ' ,  d', D )  = (2,1,3);  
for the tenfold tiling considered in 0 4, ( d ' l ,  d', D )  = (2,3,5);  and for icosahedral 
symmetry, (d" ,  d', D) = (3,3,6).  For quasicrystals, which have non-crystallographic 
symmetries by definition, we always have d ' a  2 .  

Then in D-space the vertex is a lattice vector with coordinates [x,] of the hypercubic 
lattice generated by e,,,. The sum r\'+ h' describes the same vertex but in coordinates 
rotated so as to break up the physical and complementary subspaces. In fact, equations 
(2.1) give this rotation; its inverse is 

(2.3) x, =(dI l /D)e^ , , , . r ' I+e t , , .h ' .  I1 

Neighbouring objects, if connected by a bond of the proper orientations and length, 
lift up into neighbouring lattice sites in D dimensions; thus, a connected geometry 
lifts to a network in D-space. It can be shown that Bragg diffraction-i.e. long-range 
order-exists if and only if this network is localised in the h' direction (Elser 1985b). 
In turn, we would expect that the spread of hJ depends on how constrained the 
geometry is. Quasicrystal geometries fall along a sort of spectrum according to how 
random and how well connected the network is. Closely related to this is their behaviour 
in D-space. For a perfect quasicrystal, the embedded network approximates h' = 
constant as closely as possible. This defines a hypersurfme in D-dimensional space. 

The opposite extreme of disorder occurs when nearby objects are not necessarily 
connected by a bond of proper orientation and length, e.g., in the so-called 'icosahedral 
glass' model (Stephens and Goldman 1986). The bond network can be broken by 
extended wall defects; they correspond in D-space to breaks or 'tears' in the fabric of 
the hypersurface (Elser 1987, 1988), across which h' changes discontinuously. This 
is believed to spread out h' and destroy the Bragg scattering. 

The random-tiling models studied in this paper belong to an intermediate class 
where the network, although non-deterministic, is well connected. It defines a con- 
tinuous map from d-space into D-space, with a rippled but unbroken hypersurface. 
(Such fluctuations are called 'phasons'.) Such structures can even be produced in 
growth models, if the growth rates and thermal gradients are chosen properly (Elser 
1987,1988). 

Ideas borrowed from the interface physics will be used throughout this paper to 
understand the hypersurface h'(r") .  A 'solid-on-solid' restriction is customary in 
interface physics whereby overhangs are forbidden by fiat; here it arises naturally since 
the tiles do not overlap in r'l-space. Then h J (  rl') is the analogue of the interface height. 
Whether the distribution of h' is localised or not is analogous with whether an interface 
is localised or rough:. 

Do geometries of the intermediate class have long-range order? One can easily 
construct geometries of this type where the long-wavelength deviation of the ripples 
from h' = constant is unbounded and destroys Bragg diffraction. However, the known 
properties of roughening behaviour of the interfaces strongly suggests that the con- 
straints that the network be connected are powerful enough to suppress such large 
fluctuations, preserving Bragg peaks (though with reduced intensities (Elser 1985b) 
and diffuse wings, analogous to effects of lattice vibrations in ordinary crystals). Such 

? This connection should not be confused with recent work on real interfaces of quasicrystals in physical 
space (Henley and Lipowsky 1987, Garg and Levine 1987, Ho et al 1987). Also, the D-dimensional 
embedding here is distinct from that in 'crumpling' models (Kantor et a/ 1986) which lack the solid-on-solid 
constraint. 
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random geometries with non-crystallographic symmetry that stili possess Bragg peaks 
will be called random quasicrystals. 

2.2. Phason strain 

The tilings made by the 'cut-and-project' method (Elser 1985b, Katz and Duneau 1986) 
approximate a plane h L  =constant, i.e. parallel to the plane of the physical subspace. 
As we have defined the physical hyperplane, its orientation in the 6~ lattice has special 
high symmetry but is also incommensurate (i.e. the hyperplane does not contain any 
direction with all indices rational in terms of the 6~ basis). More generally, we can 
consider a hyperplane 

h' = Er1' + constant (2.4) 

where E is the d' x dl' tensor called the 'phason strain' (Socolar et a/ 1986, Lubensky 
et al 1986); this defines the orientation. Another parametrisation of this hypersurface 
is x, = m,, rll +constant where 

m,,,=V,,x, =(d /D)e*: , ,+ (e ; , ,  E) (2.5) 

the last equality following from (2.3). 
Depending on whether the orientation is commensurate or incommensurate, the 

resulting structure may be either a crystal (Elser and Henley 1985, Katz and Duneau 
1986) or else an incommensurately modulated quasicrystal. 

We can define a uniform phason strain even for structures that are not described 
by a flat hypersurface like (2.4), by taking the limit as Irl+ CO of the ratio of components 
h' to r'l. This is defined if the fluctuations h'(r'l) - h'(0) grow more slowly than lri'l, 
which is true for d 3 1 (see (2.18)); I will call a hyperplane with this orientation an 
'approximating plane.' 

2.3. Rhombus frequencies 

Consider the case of tilings in d '  = 2  with p-fold symmetry. We can label each type 
of rhombus (distinguishing orientations) by a, p where the edges in the physical tiling 
are e , , ,  and e * , p , ,  and we choose (e*(, ,  x e * , p , )  > 0 to make the labelling unique. ( I  use 
the scalar-valued ZD cross product with (1,O) x (0, 1) = 1.) Also, let the number density 
(per unit area) of these rhombi be nOp and let npo =-nu@.  Each such rhombus 
corresponds to a square in the hypercubic lattice plane spanned by e * ( n l ,  e * , p , .  Con- 
sequently, nUp is equal to the direction cosine relating this plane to the approximating 
plane, that is 

111 /I II 

nap = m,,, x m(p1 

= ( d / ~ ) e * 1 , ,  x e*,,, + C,p,miEmi + e t , ,  x det(E). (2 .6 )  
The constant term is just d / D  times the area of the rhombus, 

11 111 

A,, = e*,,, x e ,p , .  

This shows how the number density is very generally proportional to the area of the 
rhombus (provided we maintain true p-fold symmetry, i.e. E = 0). 

The coefficients of the linear term are defined by 

cup,miEmi 3 ( d / ~ ) [ ( e * ; c z )  * ~ ) x e * l ' p , - ( e t u ,  * ~ ) x e l p 1 1 .  (2.7) 
For small phason strains, we can linearise (2.61, 8nap = 
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Since the e' are chosen to satisfy (2.2), it turns out that the coefficient in the third 
quadratic term in (2.6), e:,) x e:,,, is the same for all rhombi types related by a simple 
rotation. Hence, the imbalance of rhombus types which is entailed by E # 0 is all in 
the linear term. 

We can think of cap,,, ,  as being a tensor with D(D - 1)/2 x d'd'l non-trivial com- 
ponents, e.g., 1 0 x 6  for the Penrose tiling. (There are D ( D - 1 ) / 2  different kinds of 
rhombi, counting different orientations.) The existence of an approximating plane 
puts constraints on the possible sets of { n u p } ,  since cup,,, ,  has rank less than D( D - 1)/2. 
There must be at least D ( D - 1 ) / 2 - d ' . d l 1 =  d'(d'-1) /2+di1(di1-1) /2 ,  constraints 
(e.g. four for the tenfold rhombus tiling). 

What are the null and non-null spaces of cup,,,, for the tenfold projection? It is 
helpful to think in terms of the cyclic group generated by permutation (12345) applied 
to a and p (which is a rotation by 2.rrk/5) and the representations of this group. Then 
we find that c,,,,,, for m = 1 , 2  couples only to 'angular momentum' m = i l  and 
couples only to 'angular momentum' rn = *2. 

'Angular momentum' zero corresponds to two constraints. One is trivial: the total 
area density tEAAapnap  must be unity. Since A,, is invariant under rotations, 
Emp A,,c,~,,,  = 0 identically. For the non-trivial constraint let E, ,  = sgn(A,@) so that 

is the total number of rhombi per unit area. Again, since E, ,  is symmetric under 
rotations one finds I ; , p ~ u p ~ , p , , ,  = 0 identically: 

6fi,ile = 0 (2.9) 
to O(E). In fact, 6fitil,/Atile= 1 - ( D / d l l ) ~ - ~  det(E). 

2.4. Coarse-graining: free energ-v and correlation functions 

Consider now the random tiling model with all configurations weighted equally, and 
coarse-grain the r" coordinate so that h'( rl') becomes continuous-valued and slowly 
varying. Within the scale of the coarse graining, we can define an approximating plane 
with phason strain 

E ViihL. (2.10) 

Different configurations of our new coarse-grained h'. are no longer equally weighted: 
in integrating out the short-wavelength fluctuations we pick up a free energy 

E = ddr"  a ( E ) .  (2.11) I 
Here v(E) is the analogue of the surface energy as a function of surface orientatior, 
in an interface model (see, e.g., Rottman and Wortis 1984). 

The basis vectors are always chosen with high symmetry in both physical and 
complementary spaces. It follows that the orientation of the physical plane given by 
E = O  has a unique high symmetry in the hypercubic lattice? (e.g., in figure l ( b )  this 
is the ( 1  11) orientation). By symmetry, then, E = 0 must be a stationary point of a ( E )  

'r Yet, in the quasicrystal case, this special orientation is also incommensurate. This combination of special 
symmetry and incommensurateness is foreign to our intuition, since i t  can occur only in lattices of dimension 
0 2 4 .  
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as a function of E. Furthermore, as shown in 0 2.3, this is the only possible E that 
corresponds to a tiling which has, for each type of rhombus, equal numbers in all 
possible orientations related by symmetry. This makes it plausible that E = 0 is a 
maximum of the entropy, i.e. a minimum of a(E). 

Interestingly, Kawamura (1983) found that the maximum entropy in a triangle- 
square tiling occurs when na/nc! == 0.45. By a slight adaptation of (2.6), one finds that 
ideally n a / n o  = a / 4 =  0.433 in the tiling with 12-fold symmetry; hence Kawamura's 
result supports the conjecture that E = 0 is the maximum of the entropy. 

Finally, assuming u(E)  is analytic we get 

a(E) = f K ( E ) ' =  fK(P i lhL) '  (2.12) 

as the lowest power allowed by symmetry. Provided the symmetry operations mix 
different components of the physical and complementary subspaces, all of the d"d' 
terms in (2.12) have the same coefficient i K ,  where K is called the 'phason stiffness'. 
(An example where the complementary space is reducible into unmixed and 
inequivalent subspaces, with different stiffnesses, is found in (4.2).) 

2.5. Free energy with phason strain 

We could imagine introducing a Hamiltonian (with temperature divided out) of the form 

(2.13) 

This is to be added to the integrand in (2.11). 
Thefap = - fpo are chemical potentials for the different tiles and orientations exactly 

as introduced in dimer models (Kasteleyn 1963). For small f a p ,  this should be a weak 
perturbation of the random tiling. 

Substituting (2.13) into (2.7) to linearise in E gives 

, .  
06 m = l  i = l  

where 

Fmi E c cap.miL,@* 
4 

The total free energy will now have the form 

(2.14) 

(2.15) 

F = &E) - a ( ~ ) .  (2.16) 

The first term is the coupling (2.13) (linearised in (2.14)), and the second term is the 
entropy, the quadratic gradient-squared term in (2.12). Thus, we expect in general a 
linear response E = K- 'F  of the phason strain to imposed chemical potentials such as 
(2.13). 

A particularly interesting case is if we choose 

f o p  = PE,p 

in (2.13), thus coupling to the total number of rhombi f ir i le .  Since the total area is 
fixed in our ensemble, P>  0 favours thin rhombi, and hence P can be identified with 
the pressure. But from (2.9), F=O in this case, and there is no linear response: 
d2S/dP2 = 0. In other words, the random tiling with p-fold symmetry is incompressible. 
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Obviously the map in (2.15) of possible { onto F is many-to-one. But provided 
that cop,,,, has full rank (this is true for the sixfold or tenfold tilings), the map in (2.15) 
is onto, so that we can favour any desired phason strain by some choice of chemical 
potentials f n p ,  As we vary chemical potentials, interesting phase transitions are expected 
(Kawamura 1983, Blote and Hilhorst 1982). In this paper, however, only the response 
to small chemical potentials is considered. 

2.6. Correlation function 

In general we can define an interface correlation function by 

G( r i l )  = (Ih'( r i l )  - h"(0)  - Eori'12). (2.17) 

We can now derive (2.17) from the free energy (2.12) in a standard fashion, since 
the integral is Gaussian and trivial in Fourier space. (The case d = 2 is done in more 
detail in 9 5.) 

The result is 

G(rll) - lrll\2-d d < 2  

- Injr'il d = 2  (2.18) 

- conitant d > 2. 

(Note how, since the free energy (2.12) is quadratic, the form of the correlation 
function depends only on the dimension dI1 of the physical space.) The behaviour in 
d l 1  = 2 dimensions is marginal. For d I '  = 2, there will be algebraic singularities indicating 
quasi-long-range order, as occurs even in two-dimensional crystals at T > 0 due to 
phonons. Power-law cusps replace Bragg peaks in the diffraction pattern. 

It is amusing to consider the shape of a peak. Its centre is at Q'I, a Bragg peak of 
the perfect quasicrystal, and hence (Elser 1985b) a projection of a D-dimensional 
reciprocal lattice vector Q = Q " +  Q'. We can use Ql1 rl1+ Q' . h L  = 0 (mod 277) 
(before coarse graining) to rewrite the intensity near the peak as 

Z ( Q " +  & I ! )  - 5 d2r111r'11-v exp(i6q" - rll) (2.19) 

where 

77 = fC/Q'/' (2.20) 
and C is the prefactor of the logarithm in (2.18). Since the reciprocal lattice contains 
arbitrarily small Q' vectors, it follows that peaks exist which are arbitrarily close in 
shape to being Bragg peaks. 

It is conceivable that the argument of § 2.4 breaks down, i.e. that E = 0 is not a 
minimum, that cr(E) is non-analytic there, or that K = O .  Then the fluctuations, and 
the critical dimension for order, would be different than (2.18). A central motivation 
for this paper, then, is to develop a means of testing whether the quadratic form (2.12) 

is correct. 

3. Sixfold rhombus tiling 

As a simple example to motivate and clarify the Penrose tiling discussion, let us 
consider arbitrary tilings of the plane by rhombi with unit length edges and acute angle 
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60" (Elser 1984), as in figure 1. We wish to study the statistical properties of the 
equal-weighted random-tiling ensemble (every possible distinct tiling has equal proba- 
bility). In this section, 1 only show how to represent such tilings and the rules for 
constructing strips of the equal-weighted random tiling by a transfer matrix. 

Before beginning, let us note that (i) the possible tilings have sixfold rotational 
symmetry, which is crystallographic, and ( i i )  the vertices always form a perfect periodic 
triangular lattice. Thus, these tilings are not quasicrystals in any sense. 

( a )  Exact solution. In fact, the sixfold random-tiling model corresponds (Elser 
1984, Blote and  Hilhorst 1982) to solved models. Note that the dual of the triangular 
lattice is a honeycomb lattice. Each rhombus covers two adjacent honeycomb sites. 
Thus, the tiling configurations corresponds one-to-one to ways of laying dimers on a 
honeycomb lattice so as to cover all of its sites once. 

The random-dimer model, with equal weight to each allowed configuration, was 
solved exactly by Kasteleyn (1963) for the dimer representation; his solution also 
permits different activities for dimers in different orientations. 

There is also a one-to-one correspondence (Blote and  Hilhorst 1982) between tiling 
configurations and the ground states of the antiferromagnetic k ing  model on a 
triangular lattice (Wannier 1950): the broken lines in figure 1 correspond to the 
frustrated bonds. 

3.1. Representation by l i f t  to a three-dimensional lattice 

Following Elser (1984) we can assign D = 3 dimensional coordinates to each vertex 
as follows. Pick one vertex to be the origin 0. Obviously any vertex r can be represented 

are manifestly dependent over integers so this does not suffice to define the [x,]. 
The prescription to define the [ x , ]  uniquely is to draw a path from 0 to r along 

the tile edges, and  then let xu be the number of times this path goes in each of the 
three possible directions 2, counting negatively when it goes in the opposite sense. 
Now if the counts from two paths differ, this difference is the sum along the loop 
made up  by the two paths. But this sum, in turn, is equal to a sum over loops around 
each rhombus contained within the larger loop, and  obviously the sum around each 

in the form ( 2 . 1 ~ )  r" =Z;-f=, xu;!, with integer coefficients x u .  The basis vectors 2, I1 

I1 

Figure 1. Tilings by 60" rhombi. The vertices form a triangular lattice; every bond of the 
lattice is either a tile edge or a tile bisector (some of these are shown as broken lines). 
( a )  Periodic tiling; this is the projection of the (111 )  interface of a simple cubic lattice. 
( b )  Random tiling. 
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rhombus is zero: this shows the uniqueness. (This argument obviously works for any 
tiling composed only of rhombi.) 

We can consider the [x,] as being coordinates in a 3~ simple cubic lattice. The 
3~ basis vectors are given by (2.2) with 

e: = ( a / & ) ;  (3.1) 

for i = 1,2,3,  with z* being a unit vector normal to the plane of rll. As is obvious from 
a glance at figure 1, the rhombus tiling is a projection of an interface composed of the 
square faces of cells of the cubic lattice. The periodic tiling in figure l ( a )  approximates 
a plane h l =  constant as closely as possible. The set of all tilings corresponds one-to-one 
with the set of interfaces which (when viewed at this orientation) have no overhangs. 

Note that the diffraction pattern of such a tiling depends on the fluctuations of h’ 
if and only if the decoration depends on which edges are broken in figure 1. 

3.2. Layer representation and transition rules 

For a transfer-matrix calculation, we describe the system as a strip with width W. The 
system must be decomposed into one-dimensional layers of width W, and its degrees 
of freedom must be divided among them. Each configuration of the system is described 
by a well defined sequence of layer states, each of which is a string of steps each of 
which can take values from a discrete list. 

If necessary (not the case here, but it is the case for the tenfold tiling, B 4) there 
should be rules describing which sequences of steps are forbidden either because (a)  
they are impossible in an infinite tiling, or (b) they are equivalent to some other 
sequence, and we require a one-to-one description. This ensures that there are no 
‘dead ends’, i.e. every layer state has at least one possibility for the next one. 

Furthermore, we require necessary and sufficient conditions to determine which 
patterns of layer states correspond to tilings, and which are impossible. These have 
the form of ‘transition rules’ which tell which layer states can follow which layer states. 
Given these rules, it must also be checked that the map from tilings to sequences of 
layers is one-to-one. 

3.2.1. Decomposition rules. It is natural to choose the strip to run in a symmetr 
direction. There are two kinds of symmetry directions-six running along edges, g i ,  
and six normal to edges; the transition rules are much simpler if we use one of the 
latter directions. Then each layer is a line of triangular lattice bonds. As illustrated 
in figure 2, we write a layer state as a sequence of symbols 1 (representing a bond 
which is present as a tile edge) and 0 (representing a bond which is absent since it 
bisects a rhombus). The sequence for the next layer is considered to be offset by a 
half-space. We assume periodic boundary conditions throughout. 

I? 

3.2.2. Transition rules. Given one layer, which states are possible for the next one? 
Consider the edges which connect the two layers. Above each 0 bond, we must have 
a -;! edge, tilting to the right, and an g! edge, tilting to the left, joining to meet above. 
Above any other segment, the vertical edges from the right end and the left end must 
tilt in the same way, since it makes a rhombus. This already confirms part of the 
one-to-one condition: from each allowed pattern of 1- and 0-bonds, at most one tiling 
can be reconstructed (we need no additional degrees of freedom to describe the vertical 
bonds). 
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1 0 1  1 1 0 1 1 0  
1 -  42 
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I 

I I 

Figure 2. Transfer matrix implementation for a strip of width W = 9. The strip is grown 
upwards (arrow). The ‘horizontal’ segments making up a layer are indicated by full  lines. 
The same configuration is represented above by a binary code. The inset shows the 
numbering convertion for the basis vectors e*! .  

Let us define an ‘interval’ of length 1 to be a sequence of 1 - 1 1-bonds bounded 
by a 0 on the left and on the right; in the new row, this corresponds to an interval of 
length 1 between the vertices above the 0-bonds. By the above observation, the new 
row must have (i)  IL 1-bonds, corresponding to tiles with i?* edges (tilting left); (ii) 
one 0-bond corresponding to a single vertex in the old row with both an 61 edges and 
an  -i?! edge coming out upwards, and (iii) lR 1-bonds, where 1 = lL+ I,+ 1, correspond- 
ing to tiles with ;$ edges (tilting right). 

Our rule for sequences can now be stated: within each interval, exactly one 0-bond 
must appear in the new layer, and it can be anywhere in this interval ( I  possibilities). 
Also, it is easy to see that any sequence of layers following this rule can be reconstructed 
into a tiling, which confirms the rest of the one-to-one condition. Note that the number 
of 0-bonds is the same in each row. 

The enumeration of states of the next layer is very simple. Let us describe a layer 
by writing the lengths (1,) of the intervals of starting with each 0 and continuing up 
to the next 0. Note C, I ,  = W. Thus, 01 1101001 + 4,2, 1 , 2  (for W = 9, periodic boundary 
conditions). For the ith interval, there is one 0 in the next layer at one of I ,  possible 
positions. Note that the choice in one interval is completely independent of the choice 
in the next. The total number of possible configurations of the new layer is thus 

(3.2) 

3.2.3. Estimate of entropy of steps within layers. We can derive a rigorous (and close) 
upper bound on the true entropy using (3.2). By the Gershgorin theorem (see, e.g., 
Wilkinson 1965), given a matrix T with non-negative entries, its maximum eigenvalue 
satisfies hoc C, TPa for any a. But the R H S  of this inequality is just (3.2); it is maximised 
by setting all I ,  to the value I that maximises In l / I ,  namely 1, = 3. Note this is just a 
layer from the ideal tiling of figure l ( a ) ,  so that the deviation of hi within the layer 
averages to zero. This makes it plausible that the maximum-entropy orientation of the 
approximating plane is close to E = 0 as discussed in 0 2.4. 

The corresponding entropy is 

So s Se,, = f In 3 = 0.3662. (3.3) 
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There is exactly one step per tile, so (3.3) is also an estimate of the entropy per tile. 
The exact transfer-matrix calculation for width W = 3 reduces to a 1 x 1 matrix with 
value 2,  which gives the same value (3.2) as the exact entropy for this width. For 
comparison, the exact value for the unbounded lattice (Wannier 1950) is So = 0.3383. 

3.3. Correlations between steps in a layer 

What is the typical layer state in the random tiling? One might guess that it is just a 
random sequence of 0- and 1-bands. But if this were right, the correlation function 
G(rIl) would grow as IdI"', along this string. This would contradict the result (2.18), 
derived from the 'free energy' (2.12), which gives only a logarithmic growth. The 
resolution is that the dominant layer states in the random tiling are not random 
sequences; they are those sequences that lead to many possibilities for the next layers, 
and this constraint is enough to change the typical fluctuations. The correct weighting 
must incorporate long-range correlations between steps in the layers which suppress 
fluctuations of hL. 

A plausibility argument to exhibit how this happens in the language of layers is as 
follows. The long-range correlations arise from the step-conserving nature of the 
transition rule. Consider a fluctuation of h L  with wavelength W' in one layer: the 
weight II I ,  will be reduced by a factor exp[-c(Sh')2/ W'], as in the weighting of a I D  

random walk, for every layer in which this is true. We estimate the typical fluctuation 
h' for a given W as that value which makes the argument of the exponential be of 
order unity. If we only took the above weight, corresponding to a fluctuation in just 
one layer, we would obtain the incorrect ( W ' ) ' / 2  behaviour. However, the number of 
iterations required to remove the fluctuation is at least O( W')  so the effect of the 
fluctuation on the weight of the whole tiling is exponentiated O( W') times, which 
cancels the 1/ W' in the argument of the exponential. This crude balancing argument 
is too crude to see the logarithm and would now suggest the expected deviation 6 h L  
grows at worst as W'O. Including the sum of all the shorter-wavelength fluctuations 
should give a logarithmic behaviour in the transverse direction, in agreement with 
(2.18) (and with (5.14)). 

4. Random tenfold tiling 

In this section, I turn to tilings made with the Penrose rhombi. These have acute angles 
72" and 36" for the large and small rhombus, respectively, making possible a tenfold 
orientational symmetry. There are five different edge vectors e * i .  Regular and random 
tilings with these rhombi are shown in figure 3. (The golden ratio T 3 2 c o s ( 2 ~ / 5 )  = 
(1 + 8 ) / 2  appears frequently in the formulae below.) 

Tilings can be analysed in the same two ways presented in § 3. However, there are 
some additional conceptual and technical problems to sort out. (This should not be 
surprising, as there are 54 possible vertex types in this tiling compared with five types 
for the sixfold tiling.) 

II 

4.1. Representation in Jive-dimensional space 

The tilings correspond one-to-one to faceted hypersurfaces in a D = 5 dimensional 
hypercubic lattice, where now d '=3.  We have r "  and h L  given by (2.1). The SD 
coordinate [x,] is well defined by the uniqueness argument of 0 3.1. 
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( b l  

Figure 3. ( a )  Deterministic Penrose tiling of 36" and 72" rhombi. ( b )  Random tiling of the 
same rhombi. 

The basis vectors e*:,, are shown in figure 4, and in complementary space 
- 

(4.1) 
- I1 - 

e;1,2,3,4,5, = (4 e*,1.3,5,2.4) + 4). 
There is a technical complication of the embedding in 5-space. The third component 

of h L  is aligned along the (1 11 11) axis in 5-space: in this one direction, the complemen- 
tary subspace_ is oriented commensurately. Thus, the third component is always a 
multiple of 4:. It is exactly analogous to the one component of h L  in § 3.  

The consequence is that there is no symmetry relating the third component to the 
other two. Equation (2.12) will now contain two stiffnesses: 

S S =  - d2d[$K(IVh;/'+ IVh:12)+fK,IVh:12]. (4.2) 

Since the third component is commensurate, deterministic tilings made by the 
cut-and-project technique with hL = h t , ,  have-diff erent distributions of local environ- 
ments, depending on the value of h i  (mod(4:)). We might expect this to carry over 
into the coarse-grained free energy for intermediate length scales as a periodic potential 
term, V ( h i ) .  If V (  e )  is stronger than a critical value, then it becomes infinitely strong 
at large length scales and h i  is localised. When V (  . ) becomes weaker than this critical 
amount, there is a roughening transition and it becomes zero at the longest length 
scale. Presumably the random-tiling model corresponds to the second case. However, 
if energy terms are added that implement the 'matching rules' or otherwise favour the 
vertices of a particular h;, then we might see the localised-h: phase at low temperatures. 

The tenfold-symmetric networks of Elser (1987) contain pentagons: since the sum 
of e, vectors around a pentagon is non-zero, the above embedding scheme fails. 
Instead, he uses a less obvious embedding scheme which evades the technical complica- 
tion. In terms of the same basis vectors {e*,} and {e;} edges are represented by 
(1, -l,O, O , O ) ,  . . . , rather than (l,O,O,O,O), . . . . Then h $ = 0 ,  while r i l  and the first 
two components of h L  are merely dilated and rotated. 

I 

I1 

4.2. Representation in layers 

In contrast to the sixfold tiling (§ 3), here it is not altogether obvious how the tiling 
should be organised into layers. We consider a strip with its longitudinal (here, vertical) 
axis oriented along one of the tile-edge directions. Figure 4 shows how we may draw 
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Figure4. Implementation of the transfer matrix for the tiling of 36" and 72" rhombi. The 
segments making up a layer are indicated by full lines. The same configuration is represented 
above by strings of L', S'. Intermediate layers of horizontal thin rhombi are hatched; the 
possibilities for the next layer are indicated by broken lines. The inset shows the numbering 
convention for the basis vectors .?!. 

layers across the tiling from left to right, each consisting of a string of 'steps'. The 
rules are as follows. 

Decomposition rule ( i ) .  Every edge in the direction i?! or - becomes a long step 
L' or L-, except for those covered in rule (iv). 

Decomposition rule ( i i ) .  In each thin rhombus with one edge vertical (i.e. along 
e!), the short diagonal becomes a short step S'. Note S' (S-) is in the same direction 
as L' (L-) but is shorter by a factor T. 

Decomposition rule ( i i i ) .  Every fat rhombus with its long axis vertical is a special 
case: we span its short axis by S'S-. This means that we do not distinguish it, at this 
point, from a pair of thin rhombi. Indeed, these can always fit in the 72" angle of the 
fat rhombus. However, we can always distinguish these possibilities by the sequence 
in the next layer: the pair of thin rhombi forces another 72" angle, and hence another 
S'S-, in the next layer, while the fat rhombus never does so. 

Decomposition rule (io). Thin rhombi with their long axis horizontal are a special 
case, since both their top and bottom edges are made of e^, and e*, vectors which are 
normally L'. For each such rhombus (or domain of contiguous rhombi of this kind), 
only the lowermost edges become L'. 

Observe that the rhombi which require special cases are those which are symmetric 
about the vertical axis. Rules (iii) and (iv) are basically arbitrary choices-we could 
have chosen S-S' in rule (iii), or chosen the uppermost edge in (iv), as is very obvious 
if we imagine how to represent the same tiling reflected about the horizontal axis. 

It can easily be checked that, by these rules (especially rule (iv)), each vertex has 
exactly one step entering from the left and one step leaving to the right, except for 
some vertices which by rule (iv) have no steps on either side. Thus, each distinct layer 
is well defined. As will be shown shortly in § 4.3, the number of steps across the strip, 

/I 

11 /I 
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N w ,  is the same for every layer (assuming periodic boundary conditions). Every string 
of L', S' corresponds to a possible layer. Each layer has N, = 4 " ~  possible configur- 
ations. 

For a given phason strain E, we can deduce the numbers of L' and S" in each 
layer and the conversion factors N,/ W (steps per unit width) and  N L / L  (number of 
layers per unit distance vertically, i.e. longitudinally). We let n ( L + ) ,  n ( L - ) ,  n ( S + )  and 
n ( S )  be the respective number densities of the different kinds of steps per unit area 
of the tiling. Counting the contribution of each rhombus type, 

n ( L + )  = ( n 4 5 +  n S 1 ) +  n , ,  

(In each equation, the left-hand term corresponds to fat tiles and the right one to thin 
ones.) All tile types are counted once in (4.3) except horizontal thin rhombi ( n 5 2 )  and 
vertical fat rhombi ( n J  because of the special rules (iii) and (iv), so 

fistep = n (  L') + n ( L - )  + n ( S + )  + n ( S - )  = fit,,, + n 3 4 -  n52 (4.4) 
(fitl,e is given by (2.8)). The number densities nOp can in turn be calculated from (2.6). 

Now, for the tenfold symmetric case, E = 0, the number fractions of fat and  thin 
tiles are 7 - l  and T-? ,  so 

( 4 . 5 ~ )  

(4.5b) 

n ( L + )  = n ( L - )  = [ 2 ( F 1 / 5 ) +  ( T - ~ / ~ ) ] A - '  = (7/5)A-l 

n ( S + )  = n ( S - ) =  [ ( . ~ - ' / s ) + ( T - ' / ~ ) ] A - '  = (1/5)A-' 

where 

A = ( T - ' + T - ~ )  s i n ( 2 ~ / 5 )  

is the average area per tile. Thus the total density of steps is 

( Nw/ W)(NL/L)  = f i s tep= ( 2 / 5 ) ~ ~ A - '  20.9960. (4.6) 
From equations (4.5) we see that, within each layer, the number ratio of L= to S' must 
be T ;  the average width per step turns out to be the same number, A. With (4.5), this 
finally gives 

(4.7) 

(4.8) 

( W /  N,) = A 2 0.95 , , . 
( L /  NL) = 2 ~ ~ / 5  = 1.0472. 

4.3. Transition rule for new layer 

With the arbitrary choice used in decomposition rule (iv) the iteration should start 
from layers that take the lowermost edges of domains of horizontal thin rhombi; 
however, the most important transition rule starts from a layer along the uppermost 
edges. Therefore, let us first imagine what can go between this layer with uppermost 
edges and the next layer with lowermost edges. The relatively trivial transition rule 
LL (below), which takes us from a layer with lowermost-edges chosen layer to one 
with uppermost edges chosen, will be described last although it comes first in the 
iteration. 

From each vertex of the old layer, bonds can extend near-vertically in any of three 
directions, -s4, c?! or  -$!. Now note that, so long as we add  rhombi, we must use I1 
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the same kind of 'vertical' bond over each vertex, and so the sequence in the next 
layer is exactly the same. The only possible changes are associated with triangles, i.e. 
bisected rhombi, appearing between the layers. In 9 3, these were associated with 0 
steps; here they are associated with S' steps. As before, we can divide each layer into 
intervals between S' from which we see transition rule LS. 

Transition rule LS. 
(a) In any interval bounded by (S-,  S'), the next layer has no S'. 
(b) In any interval bounded by (S-,  S-1, the next layer has one S-; similarly, in 

(c) In any interval bounded by [S+, S'], the next layer has one S', and then one S-. 
(d)  The L' sequence in the new layer is not changed by this rule. 
Obviously, the number of steps of each type is conserved from layer to layer. 

Transition rule LS can be simplified as follows: a n  S' (S-) always moves zero or more 
places to the right (left) by exchanging places with L', up  to, but not over, the next S'. 

The special cases in decomposition rules (iii) and (iv) are reflected in special 
transition rules SS and LL. 

Transition rule SS. A vertical fat rhombus is represented by S'S-, but in the next 
layer it looks like it had been S-S'. So, following decomposition rule (iii) above, we 
need a special rule which says that it is possible (but not required) to switch S'S- +. S-S' 
before applying rule LS. (If we only had rule LS, all the S' steps would eventually 
pile u p  in immobile S'S- pairs.) 

Transition rule LL. The canonical layer defined by the decomposition rules of 9 4.2 
followed the lowermost edges of domains of thin horizontal rhombi, but transition 
rules LS and SS start from layers which follow the uppermost edges. Therefore, these 
rules must actually be prefaced by a rule that describes all possible intervening domains 
of horizontal thin rhombi. The upper edges are a path across the grid defined by e ! ,  
- e l .  Hence, the rule states that a path is allowed if and only if it always stays above 
the path of the lower edges. 

Transition rule LL can be reworded as: within each interval, we can have any 
permutation of the L' that can be made by moving L+ (L-) steps to the left (right) by 
exchanges. 

any interval bounded by [S+, S+) ,  the next layer has one S'. 

4.4. Counting possibilities for transfer matrix. 

Although the total number of new configurations is O( e w)), it is possible to compute 
how many there are and  to select one at random in a time of O( W )  because different 
lanes d o  not interact in the transition rules. This is very advantageous for the Monte 
Carlo transfer-matrix method (see 9 5.3) and is also convenient for estimates analogous 
to equation (3.3). 

The rules are applied in the order LL, SS and LS. Rule LL does not change the 
interval structure; thus, for a given starting layer state, the set of possibilities is the 
direct product of the L+- L- permutations of rule LL and the S+t, S- moves of rules 
LS and SS. 

For rule LL, there is a simple algorithm to compute the number of possible 
arrangements of the upper path over the thin rhombi, and also to select one of these 
at  random with equal weights. Figure 5 shows the set of all possible paths. Place a 
weight 1 on the leftmost node; then moving to the right, place on each node a weight 
w , + w 2  where w , ,  w 2  are the weights of the left neighbours: the final weight is the 
number of possible paths. To select a path at random, follow a path from right to 
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Figure 5. Counting possible ways to  a d d  thin rhombi,  starting with an  interval with six Lr 
steps, L-L-L+L+L-L+.  

left; at each node with two left neighbours, step to neighbour i with probability 
w r / ( w ,  + w z ) .  The maximum possible number for rule LL occurs for the lowest lower 
surface, corresponding to L-L- . . . L'L'. If the number of L+-- is m,, m- , the possible 
new paths are any permutation of L' which gives (m++ m - ) ! / m + !  m-!  possibilities. 

For rule LS, given an  interval of 1 steps:: for case (a) there is only one possibility 
in the next layer; for case (b),  there are 1 choices for places to put one S' within the 
interval and  it is easy to choose one at random; for case (c )  there are I ( / -  1)/2 choices 
and it is still easy to choose one at random. 

The only difficulty in enumerating the choices is the effect of rule SS. In that case, 
when a single pair is permuted S+S-+ S-S', the intervals on both sides come under 
case (b) instead of (a),  or case (c) instead of (b),  in rule LS, i.e. these intervals d o  
interact. Let us group the intervals into strings, such that intervals separated by S'S-. 
pairs are tied into the same string. Fortunately, not all S= are in pairs, so the strings 
are finite and different strings d o  not interact. 

To deal with such a string, note that each S'S- pair has two degrees of freedom, 
like an Ising spin. It is possible to count the possible states of the string by multiplying 
a string of symmetric (2  x 2) transfer matrices lI M,, where 

for each interval of length I ,  between two pairs. As with rule LL, we can select a state 
by following the iteration in reverse. 

As in the derivation of (3 .3) ,  we could in principle find an  upper bound for the 
entropy of the random tenfold tiling; however, in this case it is far from trivial to 
determine max,(X, Tpa) .  

5. Extracting parameters from the transfer-matrix calculation 

In this section, I consider how one could analyse transfer-matrix results so as to 
determine the parameters So and K.  In  fact, So is the logarithm of the dominant 
eigenvalue and how to obtain it is obvious; therefore, I focus on K.  Several independent 
measurable quantities are exhibited from which K can be found, which should provide 
a useful check on the results, and I discuss which of these quantities are easier to 
compute with transfer matrices. 

For discussions of finite-size scaling in related systems, see Luck (1982). 

In defining the length of an  interkal, every S' (S -1  IS counted with the interval t o  its right ( lef t )  
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5.1. Transfer-matrix formulation 

To set up  a transfer matrix, we must first choose a strip width and  a composition of 
step types. For the tenfold tiling, from equations (4.5), the only composition corre- 
sponding to zero phason strain and tenfold symmetry is n(L') = n(L-) = nL,  n(S') = 
n(S-) = n, and nL/ns = T,  which is manifestly impossible for finite N w .  The best we 
can d o  is to choose nL/ns to be one of the rational approximants to T,  Fk+, /Fk ,  where 
Fk is the kth Fibonacci number. ( In  fact (see equation (5.13) and  5 5.6), the simplest 
method to determine K demands that we iterate the transfer matrix with various phason 
strains, i.e. various compositions of steps.) Note that n(L') # n(L-) or n(S') # n(S-) 
implies that a layer is not exactly normal to the symmetry direction. 

The Nw steps now give a space of N, = k:& layer states (where k,,,, is the number 
of step types). The transfer matrix T then has Tu, = 1 if the transition rules allow 
successive layers p + v (with chemical potentials (2.13) included, this is replaced by 
a weight); otherwise Ty, = 0. 

The transition rules LS, SS and LL of 5 4.3 define partial transfer matrices which 
I will call TLs, Tss and TLL, respectively, so I have 

T=TLSTSSTLL. (5.1) 

Note that T is not generally a symmetric matrix by the definition (5.1). 
I have formulated the transfer matrix to add  an  entire layer at a time. For spin 

models, it has been found useful to impose spiral boundary conditions which allows 
adding only one site at  a time in the transfer matrix, so that it is very sparse. This 
also seems feasible for tilings, by an adjustment of the boundary conditions-it would 
correspond to a strip with a long axis that deviates slightly from the symmetry direction. 
However, this is probably less important in this system where all new layer states have 
equal, or comparable, statistical weights, or else d o  not occur at  all, and where every 
state leads to many new states. 

5.1.1. Symmetries of the transfer matrix. For a strip with balanced numbers of each 
type of step, n( L') = n( L-), n(S') = n(S-), we also have reflections about the longi- 
tudinal (x)  direction as well as the transverse ( y )  direction, since we iterate along a 
symmetric direction of the tiling. However, for a general strip we only have a twofold 
rotation (with axis normal to the plane of the strip). This can be implemented by a 
permutation matrix T,  i.e. T+ .rrTn. In the layer representation, this corresponds to 
rewriting the string of L' and S' backwards for each layer, and  furthermore to reversing 
the sequence of layers. 

We have: 

TZL= TTLLT TZs = TTLST T& = .rrTss.rr. (5.2) 

Thus, TT= TTLLT~~TL~T. Also, from § 4.3 it is clear that TLL and Tss commute, so we 
can write 

TT = MTM-' (5.3) 

with M = TTLLT~~.  (Any generic real matrix is similar to its transpose, but here the 
similarity represents a symmetry.) 

The rules of § 4.3 have an additional amusing symmetry which is not a tiling 
symmetry: TLL is invariant under replacing every S' by S- and vice versa in every 
string, while TL, and Tss are similarly invariant under L'c, L- .  
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5.1.2. Eigenvalues of transfer matrices. As is usual with transfer matrices, the highest 
eigenvalue A. is real and gives the entropy S o x  In Ao. The next-highest eigenvalue A ,  
describes the decay of order-if there is long-range order it has the same magnitude 
\All = A,, in the W + m limit, but there is a gap for finite W. A new feature here is that 
A l  is complex, A t  = lAlleiel as different kinds of layers tend to succeed each other in 
a quasiperiodic cycle. 

by considering the decomposition of 
the regular Penrose tiling into layers. Some layers straddle rows of tiles with i?! edges 
that are dual to grid lines (de Bruijn 1981) running in the layer direction. These layers 
are separated by narrow or wide 'lanes' (Henley and Lipowsky 1987) with respectively 
one or two intervening layers. The lanes form a Fibonacci sequence so that the average 
spacing between similar layerst is r 2  layers, i.e. el = 27r/r2. 

is proportional to the projection $! * g;,, where gj!, is the (10000) reciprocal 
lattice basis vector, i.e. its projection on the longitudinal strip direction. In the ideal 
tiling g(,l=$(27r)i?:li. In the presence of phason strain, g ~ l i + g ~ l i - E r g ~ t i  where gia,= 
(27r)ete, are the complementary-space basis vectors in the ideal tiling. Choosing 
coordinates so that the strip axis 

We can find the fundamental 'frequency' 

In fact 

/I II I1 

and e:, , , are all along (1 ,0) ,  we obtain 

= ( 2 7 r ) ~ - ~ ( l  -$EIl -J?E3,) .  (5.4) 

There is a subtle difficulty: the transfer-matrix procedure describes a fixed-N, 
ensemble, not the desired fixed-l ensemble, where L is the length. Maximising the 
entropy per layer is not equivalent to maximising the entropy per unit area, because 
some layers are thicker than others and tend to have more entropy per step. A bias 
to thicker layers, i.e. smaller Astep (see 0 4.2) will induce a phason strain as if a chemical 
potential of form (2.13) had been added, coupling to Astep (which by (4.4) and (2.9) 
means coupling to n34- n s 2 ) .  To obtain the desired result, we must add a compensating 
chemical potential by hand, calculating the entropy for different values and finding 
the maximum (i.e. we must do  a Legendre transform). 

5.2. Correlation functions and Jinite-size scaling 

We will work out the finite-size scaling properties (dependence on the width W) of 
the correlation function G( * ) defined in (2.17), limiting ourselves to d l 1 =  2 dimensions. 
We write W a s  a superscript on the correlation functions to remind us that they depend 
on the width. The reader may wish to refer to finite-size scaling analysis by Luck 
(1982) for the X Y  model. 

5.2.1. Bulk correlation function. Let us first find G ( d )  in the infinite system. Fourier 
transforming (2.17) gives 

G(rI') = I ( 2 ~ ) - ~  d2qll -exp(iq* d)12 (IhL(q)12). ( 5 . 5 )  

The average phason strain Eo in (2.17) only involves the q = 0 Fourier component and 
so it does not affect this result. (However, if Eo is sufficiently large, the higher powers 
in the expansion of a ( E )  become important and so the effective value of K can be 
changed). 

+ This also follows from equation (4.8). and the fact that grid lines have spacing 2 
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Also, Fourier transforming the 'free energy' given by (2.11) and (2.12) gives 

F = $  (27r ->  d2q Kq21h'(q)12 (5.6) 5 
and consequently 

()h1(9)1*) = d i / K q ' .  (5.7) 

Substituting (5.7) into (5.5) and performing the integral gives 

G(r" )  (d ' / . r rK)  In(lri i( /a)+constant (5.8) 
asymptotically, where a is the lattice cutoff (comparable to the tile edge length). 

For the sixfold rhombus tiling, comparing equation (14) of Blote and Hilhorst 
(1982) to equation (5.8) with d L  = 1 gives K = 7~/9.  The only numerical results on 
correlation functions of this type for quasicrystal models are given by Elser (1987) for 
a decagon packing with tenfold symmetry-which, however, is a growth model rather 
than an equilibrium model. Elser's figure 7 shows the RMS fluctuations of h l  as a 
function of the sample dimension L;  taking the square of the values plotted one can 
roughly fit (lh'/*) = 5 In L -  10. If these fluctuations were controlled by a stiffness K ,  
as in an equilibrium model, a calculation like that of (5.7), with d' = 2, gives (lh'12)= 
(dL/27rK) In(L/a)+constant, which would correspond to K = 0.06 for Elser's data. 

5.2.2. Longitudinal correlation function in strip. The most natural correlation function 
to consider would be the same as (2.17) but with strip boundary conditions, i.e. 
G'w'(O, L )  = (lh'(0, L )  - h'(0, L )  - Eo(& 0)1*). However, a numerical calculation will 
have less trouble if we remove some short-distance corrections by using the mean 
'height' over an entire layer: 

(5.9) 

(no ensemble averaging is done here). Essentially, this is the qX = 0 component of the 
Fourier transform taken in the x direction but not the y direction. We define the 
longitudinal correlation function 

GiY'(L) 3 (lhl"(0) - h:v(L)  - E d L  O)(*>  (5.10) 

subtracting an average phason strain as in (2.17). Paying attention to the correct 
normalisation of the Fourier transforms, we find 

GhY'(L) = W-' ( 2 ~ ) - '  dq,ll -exp(iq,L)12/Kqt= dL (5.11) 5 
where 

d = d L / 2 K W .  (5.12) 

The result (5.12) means that h i v ( L )  does a random walk, with a 'diffusion constant' 
d inversely proportional to strip width. As we would expect from finite-size scaling 
ideas, (5.11) and (5.12) agree with (5.8) when L is of order W. 

Equation (5.12) is essentially a relationship between the longitudinal correlation 
length in the finite strip geometry and the stiffness K .  Such a relationship has indepen- 
dently been given in the context of the vector spin models by Fisher (1987) and also 
by Privman and Fisher (1987). It is analgous to the relationship of longitudinal 
correlation length and domain-wall free energy for Ising systems (Fisher 1969). 
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5.2.3. Transverse fluctuations within layer. Let 

GiZL,=( lh(O,O)-h(  W/2,O)/'). (5.13) 

This can be treated with the same manipulations as the first calculation, except that 
we can retain the finite sum over N ,  . This gives the same dependence 

(5.14) Gi$, = ( d  ' /27rK 1 In( W / a )  +constant 

except the finite sum gives a different constant term. 

5.3. Correlation functions from transfer matrices 

Our correlation functions depend on h' which is not included in the state space of 
the transfer matrix as defined in 0 5.1. That is, we know the probability to get from a 
starting-layer state to a given end-layer state, but not what change in h' might occur 
between them. Formally, we can fix this by redefining the state space for layers by 
adjoining the value h;, from (5.9). (This is analogous to equation (18) of Luck (1983). 
Observe that the value of h' at one site in a layer suffices to determine h- for all other 
sites in the layer.) 

Such a continuous (hence, infinite-dimensional) state space is difficult to handle 
by standard transfer-matrix techniques. However, h L  is just a slave variable in this 
iteration-it is affected by, but does not affect, the discrete part of the state space. 
This simplification permits us to express the desired correlations of hi  as traces of 
certain finite-dimensional matrices, and thereby do the calculation with a discrete state 
space after all. 

There is one annoying difficulty in this procedure: all formulae derived from transfer 
matrices implicitly measure length in terms of the number of iterations NL. As discussed 
at the end of § 5.1, this is not simply proportional to the length L. Hence a normalising 
factor L/ NL appears in the formulae below; for every strip and for every set of chemical 
potentials that might be applied in a numerical calculation, it is necessary also to 
measure this ratio. 

5.3.1. Formula for K in terms of transfer matrix. Let PL and P" be the left and right 
eigenvectors corresponding to iz,,,, the largest eigenvalue (for T is not in general 
symmetric), normalised so that their scalar product (PL P") is unity. Then the 
probability of layer p occurring within the bulk is PbP,".  We normalise the transfer 
matrix 

f =  A;:,T 

so that, e.g., Pbi$,f+P: gives the probability of finding layers p, v and p in succession. 
associated with going from old layer p to new 

layer v. We once again explicitly consider the possibility of non-zero phason strain 
in the longitudinal direction. The average phason tilt is 

Also, let U,, be the difference in 

d(h,',(L))/dL= ( N L / L ) ( ~ )  
where 

( u ) = c  PbT,,,P:u,,. 
P U  

I t  is convenient to define matrices U'" (for m = 1 , .  . . , d ' )  with elements 

(5.15) 

(5.16) 
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so that, with matrix multiplication contracting the Greek indices, 

( U )  = ( PL, UPR). (5.17) 

The variance of h& is more complicated. We want to calculate 

fi= ( N L / L )  d((h,=(L)(')-l(h~~(L))I2)IdN, (5.18) 

which by (5.12) equals dL/2KW. Let 

U", = U," - ( U )  (5.19) 

and define matrices V(m) analogously to (5.16); obviously 

(U) = ( PL, VP") = 0. (5.20) 

The part of (5.18) due to the fluctuation of U values in one layer can be expressed 

v,,,.p, = /ULla12Tpm. (5.21) 

However, the U are corre1:ted between successive layers. The correlations decay 
geometrically as powers of T and summing this geometric series one can derive 

in terms of V,2j with elements 

d -  

(PL,V(2)PR)+2 1 (PL,V'"(l-i)-'V"'PR) 
L m = l  

(5.22) 

To be precise, (5.22) should have the pseudo-inverse of (1 -?) since this matrix is 
singular. But (5.22) is still well defined: the singular matrix is surrounded by V(m) 
factors on both sides which (by (5.20)) annihilate the singular subspace PRPL. 

5.3.2. Monte Carlo transfer-matrix method. An alternative method which is well adapted 
to the random-tiling problem is the Monte Carlo transfer-matrix (MCTM) method 
(Nightingale and Blote 1986). 

Repeated multiplication of an initial distribution vector PI by the transfer matrix 
gives a vector (TN~PI)U, which is calculated by brute force in the ordinary iterative 
approach. The MCTM approach represents this vector by a discrete collection of M 
layer states {v}. Since we do not know Amax beforehand, we must approximate f by 
?= A,:T where Aest is a running estimate of Amax. In every iteration we proceed as 
follows. 

(i) For each v represented in our list, we calculate the total weight of possible new 
states, w, = Z, TPY. We choose an integer M ,  2 0 by a random process that satisfies 
( M , )  = w,, and then if necessary replicate or remove v so that M ,  copies remain. 

(ii) For each state v in the modified list, we pick at random one of the next states 
with the weight fpv/ w,. 

Each state in the list, with its precursors in previous iterations, defines a tiling 
configuration. In fact, the MCTM method generates a sample of configurations with 
the correct statistical weight. Thus, we can directly evaluate any desired correlation 
function, without needing to calculate additional eigenvalues or sums such as (5.22). 

The general advantages of the Monte Carlo transfer-matrix method are as follows. 
( i )  I t  needs less computation. Say each step in a layer state has p choices ( p  = 4 

for the tenfold tiling). The standard method requires storing, calculating and multiply- 
ing the entire p N w  x pNN, transfer matrix ( 0 ( p Z N w )  operations). With the MCTM 

- 
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approach, this is done only for the M states in the list so the work per iteration is at  
most O ( p N * M )  which permits wider strips. In fact, for the random-tiling models the 
problem of calculating Tup factors into independent intervals (see Q 4.3), so the work 
is only O(NwM) in this case! 

(ii) It handles systems with infinite-dimensional state spaces, such as arise from 
continuous degrees of freedom (in particular, h’ for the tilings). 

The MCTM’S disadvantage, of course, is its statistical errors which go as M - ’  ’. 

5.4. Ways to extract K from transfer-matrix data 

It is instructive to review the analogous question for the d = 2 Ising model, at sufficiently 
low T that the correlation length exceeds the strip width W. The principal difference 
is that the Ising model has a discrete up-down symmetry whereas the random tilings 
have a continuous symmetry under displacements of hL. Corresponding to these 
symmetries are the excitations which give disorder: domain walls in k i n g  models and 
long-wavelength phason fluctuations in the tilings. The respective ‘stiffnesses’ of the 
excitations are the domain-wall free energy (T and the phason stiffness K. 

In seeking the value.of the stiffness, for both the Ising and  the tiling cases, there 
are in principle 2 x 2 ways, since ( i )  we can use excitations either longitudinal to the 
strip or transuerse to it; the transverse ones are simpler to express in terms of transfer 
matrices since they are simultaneous in ‘iteration time’, and (ii) we can probe the 
excitations, either by forcing them and measuring the change in the free energy, or by 
looking at  fluctuations in equilibrium; note that domain walls have a higher energy 
cost than long-wavelength phasons, so fluctuations are easier to see in continuous 
models (such as the tiling with h l )  than in Ising models. 

5.4.1. Forcing a transuerse excitation. In general, this is the simplest to implement and  
often the most reliable. (See Luck (1981) for an  example in a roughening context.) 
For Ising models, this is done by applying antiperiodic boundary conditions so as to 
force one domain wall to run the entire length of the strip. For the tenfold-tiling 
model, this can be done by choosing the numbers of L’, L-, S’, and S- in a layer so 
as to impose a given phason strain in the x direction. ( In  fact, we cannot avoid 
this-the ideal irrational number ratio 7 (see equations (4.5)) is impossible with a 
finite strip width.) 

5.4.2. Forcing a longitudinal excitation. For tiling models, we can couple to the phason 
strain by adding chemical potentials (energy terms) weighting different orientations 
of tiles differently, as in (2.13). Evaluating the phason strain would require evaluating 
d(h.&(L))/dL by (5.15) or using the MCTM method. (The Ising analogue would be to 
add  a slowly modulated field H ( L ) ,  which is awkward.) 

5.4.3. Transverse Juctuations. This is practicable only for tiling models. We need 
merely evaluate (5.13). 

5.4.4. Longitudinal Juctuations. A more traditional approach would involve labelling 
the eigenvectors according to a wavevector q -  which describes their transformation 
under translations in h’, and then considering the q’ dependence of the largest 
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eigenvalue of each subspace. This is the spirit of the analysis of Luck et a1 (1983) for 
a pinning model; it leads (Henley unpublished) to the analogue of the Fisher relation 
between (+ and the eigenvalues for the king case (Fisher 1969). Here, the more 
streamlined approach appears to be to find d (5.18) directly, either from (5.22) or by 
using the MCTM technique. 

5.5. Results for very narrow strips 

For some strips with N w = 3  and N w = 4  the transfer matrix (5.1) was constructed by 
hand, and the largest eigenvalue and corresponding eigenvalue were determined. To 
reduce the size of the matrices, I used the symmetries of cyclic permutation of the 
strings representing the layers, and also reflection around the x axis if N(L') = N(L-),  
N ( S + )  = N ( S - ) .  The entropies quoted are for the fixed-N, ensemble, which should 
be slightly different numerically from the true value as noted at the end of § 5.1. 

For Nw = 3, for layers containing L++  L-+ S', there are only two states modulo 
the symmetry. Then A o =  (5+413)/2.  There are 1.639 fat rhombi per layer and exactly 
the same number of thin rhombi, so the area per layer is A = 2.6514A. Hence we get 
an entropy So = In A,/ A = 0.470A-', and a ratio nfaJ nfhln = 1. 

For Nw = 4, for layers containing L'+ L-+ S++ S-, there are five states modulo 
symmetry. We get A. 2 7.547, 1.969 fat and 0.963 thin rhombi per layer, So = 0.673A1', 
and nfat /nthin = 2.045. 

These numbers seem consistent with So = 0.5A-', but manifestly larger strips are 
needed just to get an approximation. (Note that Nw = 4 is the smallest strip for which 
all three rules of § 4.3 apply.) To get reliable results for the random tiling with tenfold 
symmetry, the strip should not only be wide but have a good approximant to the ratio 
N(L*)/  N ( S * )  = T. The first strips of this type are Nw = 6, with 2L'+ 2L-+ S f +  S- 
making 15 states, and Nw= 10, with 3L'+3L'+2S'+2St making 1260 states. 

6. Discussion: summary, applications and generalisations 

Random tilings provide a minimal model for a particular type of random quasicrystal 
packing. This can usefully be represented as a hypersurface in a higher-dimensional 
space (0 2), and questions of long-range order can be translated into questions about 
the orientation dependence of the 'surface free energy' and roughness of the hypersur- 
face. I have displayed formulae explicitly relating its orientation (i.e. the 'phason 
strain') to the frequencies of tiles, which are useful if (as in § 5) we wish to bias for 
a particular strain. 

In  §§ 3 and 4, I have presented schemes to decompose tilings into layers, using a 
modest number of degrees of freedom per step in the layer, and properly representing 
each distinct tiling by a different configuration. 

Among other things, these decompositions are labelling schemes-ways to map the 
quasicrystal sites to a latticet. Such decompositions can be used for transfer matrices 
defined on a fixed given (say ordered) Penrose tiling geometry, to test other approaches 
for several problems: ferromagnetic Ising spins on tiling sites, both bulk critical 

+ The impossibility of constructing labelling schemes with additional desirable properties has been discussed 
by Frenkel er U /  (1986). 



Random tilings with quasicrystal order 1675 

properties (e.g. Godr iche  et a1 1986) and interface roughening (Henley and  Lipowsky 
1987, Garg and  Levine 1987, Ho et a1 1987) or  transmission matrices to study electronic 
states on tilings (e.g. Kohmoto and  Sutherland 1986). 

Following from the decomposition rules were relatively simple short-range transi- 
tion rules specifying which configurations are allowed and  enabling the construction 
of transfer matrices. The only remaining defect is that, to calculate the entropy at 
fixed area, one must repeat the calculation at various pressures and  d o  a Legendre 
transformation. 

The approach works especially well with the Monte Carlo transfer method approach 
(0 5.3). The branching process of the Monte Carlo transfer-matrix method ensures a 
correctly weighted ensemble because layers which lead to more statistical weight in 
subsequent layers can have more 'descendents.' However, if we omit the step in which 
we replicate or  remove states, it gives a growth model which does not look ahead. It 
has been found that growth induces phason strain in an  aggregation model; it would 
be interesting to verify similar effects in a tiling model. 

Similar decomposition and transition rules have been devised for two other impor- 
tant two-dimensional tilings (Henley unpublished). One of these, with tenfold sym- 
metry, can be thought of as a tiling by isosceles triangles: acute, with sides (1, T, T )  

and obtuse, with sides (7, 1, 1). The vertices are both ( i )  the sites of large 'atoms' in 
the model of Widom et a1 (1987) and LanGon et a1 (1986) and  (ii) the sites of decagons 
in the model of Elser (1987), for a set of well ordered configurations. 

The other tiling, with 12-fold symmetry, is the triangle-square tiling; this is much 
simpler than the tenfold rhombus tiling, because there are only four vertex types instead 
of 53. The decomposition into layers uses a strip oriented 15" away from tile edge 
directions and three states for each step: A* along the tile edges, analogous to L' in 
0 4, and 0 in the transverse direction along a square diagonal, somewhat analogous to 
S'S. Analogous to the formulations in § §  3 and 4, the numbers of A' and 0 steps 
are conserved from layer to layer. 

It is illuminating to compare this transfer-matrix formulation to that used by 
Kawamura (1983) and mentioned in § 1.2. Kawamura divided into layers in a similar 
fashion, using, however, eight states per step, and each tiling can be transcribed 
uniquely. However, the strings of states do not correspond one-to-one with possible 
layer configuration: many such strings correspond to impossible layers so the number 
of states is much less than 8". For the allowed ones, the transfer matrix breaks up  
into disconnected subspaces. (The physical significance is clearer in my formulation- 
these just correspond to the different (conserved) numbers of A* and 0 steps.) The 
number of states in the largest subspace is 95,299,885 and 2623, for N ,  = 3, 4, 5 and  
6 respectively, which is numerically well fitted by 3 . 6 ~ 3 ~ ~ .  This is not surprising, 
since (in my formulation) the total number of layer states in all subspaces is manifestly 
3NU. (Kawamura's prefactor is larger since his layer states also depend on the configur- 
ation of steps in the next layer.) The transition rules of Kawamura's formulation have 
the advantage of being local, like a spin model (whereas my rules sometimes allow 
interchanges of steps across large distances). However, they are difficult to grasp, since 
they consist of a list of all the 107 cases allowed out of the 84 conceivable combinations 
of four neighbouring states. 

Finally, in 0 5, I have discussed possible methods for extracting the parameters 
from transfer matrices. In fact (95.4), all four conceivable methods seem useable 
(which is not true for Ising models). The redundant information from using more 
than one method, and from considering phason strains in different directions relative 
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to the strip axis, will be important for confirming whether Elser’s conjecture of the 
form (2.12) is correct. 

In three-dimensional tilings with icosahedral symmetry, a transfer-matrix approach 
is also possible, of course. However, in contrast to the ZD case, neither the decomposi- 
tion rules nor the transition rules will be simple. 
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Note added. Very recently, Shaw (1987) has implemented the Monte Carlo transfer-matrix method for the 
sixfold symmetric tiling described in 5 3, verifying the known exact values of the entropy per tile So (quoted 
above, after equation (3.3)) and stiffness K (quoted above, after equation (5.8)). (The latter is extracted 
by the method of forcing a transverse phason strain.) Also, the behaviour of interfaces in tilings, studied 
by Garg and Levine (1987), Henley and Lipowsky (1987) and Ho et al (19871, has been generalised to the 
random tilings discussed in this paper by Lipowsky and Henley (1988). 

Note added in proof: Equation (2.12), and the sentence following, are false. Even if the complementary 
space has only one irreducible component it is still common that there is more than one phason stiffness 
constant. That is, the complementary space vectors are one irreducible representation of the p-fold symmetry 
group, but the physical complementary space tensor E is a reducible representation (Bak 1985). For tenfold 
symmetry, the correct form is 

in place of (4.2). All formulae involving K in I 5  should be modified accordingly, but the qualitative 
conclusions there and in § 2.6 are unchanged. 
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